Radiant Barrier San Antonio, Tx

Heat travels from a warm area to a cool area by a combination of conduction, convection, and radiation. Heat flows by conduction from a hotter location within a material or assembly to a colder location. Heat transfer by convection occurs when a liquid or gas is heated by a surface, becomes less dense, and rises (natural convection), or when a moving stream of air absorbs heat from a warmer surface (forced convection). Radiant heat travels in a straight line away from any surface and heats anything solid that absorbs the incident energy. Radiant heat transfer occurs because warmer surfaces emit more radiation than cooler surfaces.

When the sun heats a roof, it’s primarily the sun’s radiant energy that makes the roof hot. A large portion of this heat travels by conduction through the roofing materials to the attic side of the roof. The hot roof material then radiates its gained heat energy onto the cooler attic surfaces, including the air ducts and the attic floor. A radiant barrier reduces the radiant heat transfer from the underside of the roof to the other surfaces in the attic.

A radiant barrier’s performance is determined by three factors:

  • Emissivity (or emittance) – the ratio of the radiant energy (heat) leaving (being emitted by) a surface to that of a black body at the same temperature and with the same area. It’s expressed as a number a between 0 and 1. The higher the number, the greater the emitted radiation.
  • Reflectivity (or reflectance) – a measure of how much radiant heat is reflected by a material. It’s also expressed as a number between 0 and 1 (sometimes, it is given as a percentage between 0 and 100%). The higher the number, the greater the reflectivity.
  • The angle the incident radiation strikes the surface—a right angle (perpendicular) usually works best.

gac_logo

Call Green Air Company at 210-647-6020 For all your AC or Heating Repair Needs.

#TACLB44018E